Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multilayered regulation of TORC1-body formation in budding yeast.

Identifieur interne : 000273 ( Main/Exploration ); précédent : 000272; suivant : 000274

Multilayered regulation of TORC1-body formation in budding yeast.

Auteurs : Arron Sullivan [États-Unis] ; Ryan L. Wallace [États-Unis] ; Rachel Wellington [États-Unis] ; Xiangxia Luo [États-Unis] ; Andrew P. Capaldi [États-Unis]

Source :

RBID : pubmed:30485160

Descripteurs français

English descriptors

Abstract

The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.

DOI: 10.1091/mbc.E18-05-0297
PubMed: 30485160
PubMed Central: PMC6589571


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multilayered regulation of TORC1-body formation in budding yeast.</title>
<author>
<name sortKey="Sullivan, Arron" sort="Sullivan, Arron" uniqKey="Sullivan A" first="Arron" last="Sullivan">Arron Sullivan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wallace, Ryan L" sort="Wallace, Ryan L" uniqKey="Wallace R" first="Ryan L" last="Wallace">Ryan L. Wallace</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wellington, Rachel" sort="Wellington, Rachel" uniqKey="Wellington R" first="Rachel" last="Wellington">Rachel Wellington</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Luo, Xiangxia" sort="Luo, Xiangxia" uniqKey="Luo X" first="Xiangxia" last="Luo">Xiangxia Luo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Capaldi, Andrew P" sort="Capaldi, Andrew P" uniqKey="Capaldi A" first="Andrew P" last="Capaldi">Andrew P. Capaldi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30485160</idno>
<idno type="pmid">30485160</idno>
<idno type="doi">10.1091/mbc.E18-05-0297</idno>
<idno type="pmc">PMC6589571</idno>
<idno type="wicri:Area/Main/Corpus">000398</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000398</idno>
<idno type="wicri:Area/Main/Curation">000398</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000398</idno>
<idno type="wicri:Area/Main/Exploration">000398</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multilayered regulation of TORC1-body formation in budding yeast.</title>
<author>
<name sortKey="Sullivan, Arron" sort="Sullivan, Arron" uniqKey="Sullivan A" first="Arron" last="Sullivan">Arron Sullivan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wallace, Ryan L" sort="Wallace, Ryan L" uniqKey="Wallace R" first="Ryan L" last="Wallace">Ryan L. Wallace</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wellington, Rachel" sort="Wellington, Rachel" uniqKey="Wellington R" first="Rachel" last="Wellington">Rachel Wellington</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Luo, Xiangxia" sort="Luo, Xiangxia" uniqKey="Luo X" first="Xiangxia" last="Luo">Xiangxia Luo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Capaldi, Andrew P" sort="Capaldi, Andrew P" uniqKey="Capaldi A" first="Andrew P" last="Capaldi">Andrew P. Capaldi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomycetales (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomycetales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30485160</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Multilayered regulation of TORC1-body formation in budding yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>400-410</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E18-05-0297</ELocationID>
<Abstract>
<AbstractText>The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sullivan</LastName>
<ForeName>Arron</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wallace</LastName>
<ForeName>Ryan L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wellington</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Xiangxia</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Capaldi</LastName>
<ForeName>Andrew P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM097329</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008659</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004718" MajorTopicYN="N">Saccharomycetales</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30485160</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E18-05-0297</ArticleId>
<ArticleId IdType="pmc">PMC6589571</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Genet. 2001;35:647-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 2;12(7):588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):43495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Feb 1;393(Pt 3):797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16201971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jun 2;125(5):1003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2006;409:329-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(10):R100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17076895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Aug 3;27(3):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17679098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008 Jan 01;13:2408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 26;284(26):17720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Jun 11;38(5):768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Jul 30;39(2):171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20670887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2010 Dec 21;3(153):rs4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 10;332(6035):1317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1145-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 31;493(7434):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 15;339(6125):1320-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23429704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 31;340(6136):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Sep;10(9):1565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 03;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25279700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Mar 13;290(11):7221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25631054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Sep 10;6:8256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Oct 06;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):48-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Dec 17;6(2):463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26681516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 11;536(7615):184-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2016 Oct;12(10):867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27571477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Feb 17;292(7):2660-2669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28057755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 08;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Jun 29;37(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2017 Sep 4;216(9):2679-2689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28774891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Jun 30;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28788436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Oct 12;550(7675):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28976958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 Nov 15;130(22):3878-3890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Dec 7;68(5):835-846.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29107538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Dec 21;552(7685):368-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29236692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 1;15(9):2196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Sullivan, Arron" sort="Sullivan, Arron" uniqKey="Sullivan A" first="Arron" last="Sullivan">Arron Sullivan</name>
</region>
<name sortKey="Capaldi, Andrew P" sort="Capaldi, Andrew P" uniqKey="Capaldi A" first="Andrew P" last="Capaldi">Andrew P. Capaldi</name>
<name sortKey="Luo, Xiangxia" sort="Luo, Xiangxia" uniqKey="Luo X" first="Xiangxia" last="Luo">Xiangxia Luo</name>
<name sortKey="Wallace, Ryan L" sort="Wallace, Ryan L" uniqKey="Wallace R" first="Ryan L" last="Wallace">Ryan L. Wallace</name>
<name sortKey="Wellington, Rachel" sort="Wellington, Rachel" uniqKey="Wellington R" first="Rachel" last="Wellington">Rachel Wellington</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000273 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000273 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30485160
   |texte=   Multilayered regulation of TORC1-body formation in budding yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30485160" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020